A Knowledge-Informed and Pareto-Based Artificial Bee Colony Optimization Algorithm for Multi-Objective Land-Use Allocation

نویسندگان

  • Lina Yang
  • Axing Zhu
  • Jing Shao
  • Tianhe Chi
چکیده

Land-use allocation is of great significance in urban development. This type of allocation is usually considered to be a complex multi-objective spatial optimization problem, whose optimized result is a set of Pareto-optimal solutions (Pareto front) reflecting different tradeoffs in several objectives. However, obtaining a Pareto front is a challenging task, and the Pareto front obtained by state-of-the-art algorithms is still not sufficient. To achieve better Pareto solutions, taking the grid-representative land-use allocation problem with two objectives as an example, an artificial bee colony optimization algorithm for multi-objective land-use allocation (ABC-MOLA) is proposed. In this algorithm, the traditional ABC’s search direction guiding scheme and solution maintaining process are modified. In addition, a knowledge-informed neighborhood search strategy, which utilizes the auxiliary knowledge of natural geography and spatial structures to facilitate the neighborhood spatial search around each solution, is developed to further improve the Pareto front’s quality. A series of comparison experiments (a simulated experiment with small data volume and a real-world data experiment for a large area) shows that all the Pareto fronts obtained by ABC-MOLA totally dominate the Pareto fronts by other algorithms, which demonstrates ABC-MOLA’s effectiveness in achieving Pareto fronts of high quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Urban Land-Use Allocation By A Cell-based Multi-Objective Optimization Algorithm

Allocating urban land-uses to land-units with regard to different criteria and constraints is considered as a spatial multi-objective problem. Generating various urban land-use layouts with respect to defined objectives for urban land-use allocation can support urban planners in confirming appropriate layouts. Hence, in this research, a multi-objective optimization algorithm based on grid is pr...

متن کامل

A Novel Multi-Objective Artificial Bee Colony Algorithm for the QoS Based Wireless Route Optimization Problem

In this paper, an efficient multi-objective artificial bee colony optimization algorithm based on Pareto dominance called PC_MOABC is proposed to tackle the QoS based route optimization problem. The concepts of Pareto strength and crowding distance are introduced into this algorithm, and are combined together effectively to improve the algorithm’s efficiency and generate a set of evenly distrib...

متن کامل

A Non-dominated Sorting Ant Colony Optimization Algorithm Approach to the Bi-objective Multi-vehicle Allocation of Customers to Distribution Centers

Distribution centers (DCs) play important role in maintaining the uninterrupted flow of goods and materials between the manufacturers and their customers.This paper proposes a mathematical model as the bi-objective capacitated multi-vehicle allocation of customers to distribution centers. An evolutionary algorithm named non-dominated sorting ant colony optimization (NSACO) is used as the optimi...

متن کامل

Elite Opposition-based Artificial Bee Colony Algorithm for Global Optimization

 Numerous problems in engineering and science can be converted into optimization problems. Artificial bee colony (ABC) algorithm is a newly developed stochastic optimization algorithm and has been widely used in many areas. However, due to the stochastic characteristics of its solution search equation, the traditional ABC algorithm often suffers from poor exploitation. Aiming at this weakness o...

متن کامل

Knowledge-informed Pareto simulated annealing for multi-objective spatial allocation

Spatial allocation is the process of assigning different attributes (e.g., land-use or land-cover) to spatial entities (e.g., map polygons or grid cells). It is an exercise that often requires the analysis of multiple, sometimes conflicting, objectives. Multi-objective spatial allocation problems often exhibit substantial computational complexity, especially when spatial pattern characteristics...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ISPRS Int. J. Geo-Information

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2018